
Utilising the Event
Calculus for Policy Driven
Adaptation in Mobile
Systems

C. Efstratiou
Lancaster University

C.Efstratiou 2/13

Overview

Adaptation in Mobile Systems
Requirement for a Policy Based approach
The Coordinated Adaptation Platform
Event Calculus as a Policy Language
Examples
Open Issues
Conclusions

C.Efstratiou 3/13

Adaptation

Current systems dealing with a single type of
adaptation (i.e. network QoS, power).
Need for applications capable of adapting to
multiple types of adaptation triggers

Network QoS
Power availability
Service availability
User context

Multiple applications

C.Efstratiou 4/13

Problems and Restrictions of
Current Systems

Conflicting adaptation
Un-coordinated adaptation
No user awareness

Understanding of system behaviour
Support for customisable adaptation

C.Efstratiou 5/13

The cause: Tight coupling of adaptation
policies and mechanisms

Current systems: hard coded adaptation
policies within the adaptive applications.
Requirement for:

Decoupling policies and mechanisms
Allow modification of policies
Allow dynamic user involvement in the
adaptation cycle

C.Efstratiou 6/13

The Coordinated Adaptation
Platform

Registry Adaptation
Control

ApplicationMonitoring Tools

Policies

Registration

Triggering

Application
information

Application
Registration

Mechanisms
State variables

Policy evaluation
State variables as
events
Adaptation
mechanisms as
actions

C.Efstratiou 7/13

The Event Calculus

Happens(e, t)
HoldsAt(f, t)
Initiates(e, f, t)
Terminates(e, f, t)
Clipped(f, t1, t2)
Declipped(f, t1, t2)
t1 < t2

time

e

t

time

ei ejf

Event

Fluent

C.Efstratiou 8/13

The Event Calculus Policy
Language

event definition1
…
event definitionn

fluent definition1
…
fluent definitionm

condition { condition }
action {

action1
…
actionk

}

C.Efstratiou 9/13

Policy Rules: Example 1
event lowBand :- NetworkInterface.availableBandwidth < 19200
event normBand:- NetworkInterface.availableBandwidth >= 19200

fluent inLowBand {
initiates(lowBand)
terminates(normBand)

}

condition {
initiates(lowBand, inLowBand, t1) and
not clipped(inLowBand, t1, t2) and
t2 = t1 + 30

}

action {
WebBrowser.LowBand()

}

C.Efstratiou 10/13

Policy Rules: Example 2
event lowPower :- Battery.Percent < 10
event normPower :- Battery.Percent >= 10

fluent inLowPower {
initiates(lowPower)
terminates(normPower)

}
condition {

initiates(lowPower, inLowPower, t1)
}
action {

WebBrowser.LowBand()
}

C.Efstratiou 11/13

Policy Rules: Example 3
event lowPower :- Battery.Percent < 10
event normPower :- Battery.Percent >= 10
event webHighPriority :- Priorities.getPriority(“WebBrowser”) = 1
event webNormPriority :- Priorities getPriority(“WebBrowser”) != 1

fluent inLowPower {
initiates(lowPower)
terminates(normPower)

}
fluent atWebPriority {

initiates(webHighPriority)
terminates(webNormPriority)

}
condition {

(initiates(lowPower, inLowPower, t1) and
not holdsat(atWebPriority, t1)) or

(terminates(atWebPriority, t2) and
holdsat(inLowPower, t2))

}
action {

WebBrowser.LowBand()
}

C.Efstratiou 12/13

Open Issues

Efficient Policy Evaluation
Model event calculus predicates as FSMs.

Policy Specification Conflicts
Adaptation Conflicts

Sequence of adaptation actions aiming at conflicting
goals
Not always possible to determine what is the primary
goal
User involvement may be necessary to resolve
unclear situations

C.Efstratiou 13/13

Conclusions

Supporting multiple adaptive applications
triggered by a variety of adaptation
attributes.
Decouple adaptation mechanisms and
adaptation policies.
Utilise an event based policy language
that allows the explicit specification of time
dependencies.

